Math 564: Real analysis and measure theory Lecture 14

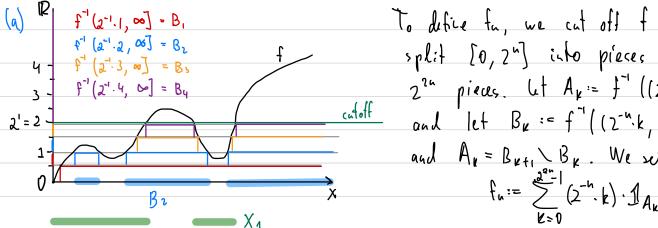
Prop lapproximation by simple functions).

(a) For each fet(X,B), there is an increasing for the of non-negative simple tomotions such the volvery number on every set B=X on thick f is bdd, i.e. $\|f_{\alpha}\|_{\mathcal{B}} - f\|_{\mathcal{B}}\|_{\mathcal{U}} \to 0.$

(6) For each fel(X,B), there is a signence for -> f of simple furthers such that 15/1/1/11

and the convergence is uniteral on every set B = X on which f is bdd.

Roof. (1) follows by apply (a) to for and for this obtaining non-nego simple funds to It and for it is uniform convergence statement schiefled, so the tenefronce for :- for are desired.



To defice for, we cut off f at & 2" and split [0,2"] into pieces of size 2", 10 22 pieces. Let Ax = f ((2 h. k, 2 h (k+1))) and let Bu := f ((2".k, 00]), so Bo = B, z... and $A_{k} = B_{k+1} \setminus B_{k}$. We set $f_{n} := \sum_{k=0}^{2^{n}-1} (2^{-n} \cdot k) \cdot 1_{A_{k}} = \sum_{k=1}^{2^{2n}} 2^{-n} \cdot 1_{B_{k}}$.

Note that $f_n \nearrow f$ since the sets $X_n := f''([0, 2^n]) \nearrow (X \setminus \{x \in X : f(x) = \infty\})$ for (for) wonverges to for WXn and on Xo:= {x EX: f(x)= 9}, for |xoo = 2,50

for |xoo T ox = f(xoo. As for uniform convergence, note that if f is bold on BEX, then B = Xu for large enough n E (N) and I fulx - flxully & 2 -h -> 0.

Det for fe L+(x,B), ne defice If dp := sup { Isd p : 0 < s < f simple }.

Rop. Ut f, g & L'(X, B).

(a) f≤g then Jfdp≤ ∫gdp.

(6) Ja-fdy = a. ffly be all a>0.

(c) \fdp = 0 <=> f=0 a.e.

Roof. (c) =>. We prove the contrapositive: suppose $X_0 := \{x \in X : f(x) > 0\}$ has positive meas, and show that $\int \{d\mu > 0\}$. Indeed, $X_0 = \bigcup_{n \in \mathbb{N}^d} X_n$, where $X_n := \{x \in X : f(x) > \frac{1}{n}\}$, so for some $u \in (\mathbb{N}^d)$ X_n has positive massive. But $s := \frac{1}{n} \cdot 1_{X_n} \le f$, so $\int f d\mu > 0$.

Is $d\mu = \frac{1}{n} \cdot \mu(X_n) > 0$.

Cartier. Stegdy = Stdy + Sgdy is not immediate because we don't know whether every simple function s \(\int \text{ftg} \) into a sum of simple teaching \(\hat{f} \) and \(\hat{g} \) \(\text{g} \). To prove this, we need to replace sup with limits of

Monotone Convergence Thosem (MCT). Let for, f & Lt (X, B). If for I fee Study / Sidy. Becase for £ f, we have Stody £ Stdy and Stady is increasing. We need to show lim Italy > Italy.

Thus we tix a simple furthern 0 = s & f and ain to show li-Sfady > Ssdp. For his if suffices be fix E 40 and show that 11m fr. dp 3) (1-6) 5 dp

becare) (1-4) 5 dp = (1-4) 5 dp / 1 as 5-50. Becare (1-2) 5 < 1 for all xEX, we have that $X = \{ \{ \} \} \times \mathbb{I}$ where $X_n := \{ \} \times \mathbb{I} \times \mathbb{I$

Corollary (elb) additivity of Ectypial). The Enlegial on Lt (k, x) is additive, i.e. JEfudy = Z Study. front. Let's show first that Ifty dp = Ifdp + Igdp. Let for If and golg be simple functions, so futge Ity By MCT, no have:

Ifty dp MCT lim I(fatgu) dp = lim I ludp + lim Igdp + Igdp + Igdp.

Now I have For an infinite sum Zfu, observe Mut Zfu / Zfu 10 by MCT again, we have: Then I find = lim Z I find p = lim I z for d p = J z for d p. Corollary (fundious defining measures), Ead $f \in L^{+}(X, B)$ defines a measure μ_{F} on (X, B) by $\mu_{F}(B) := \int \mathbf{1}_{B} \cdot f \, d\mu =: \int_{R} f \, d\mu$. Front Clarity, $f_{\mu}(\emptyset) = 0$ so let $B = \bigcup_{n \in \mathbb{N}} B_n$ with all subsite B. Then $\mathbb{1}_{\mathcal{B}} = \sum_{n \in \mathbb{N}} \mathbb{1}_{\mathcal{B}_n}$, so $\mathbb{1}_{\mathcal{B}} \cdot f = \sum_{n \in \mathbb{N}} (\mathbb{1}_{\mathcal{B}} \cdot f)$, so by orbit additionity: $\mu(B) = \int_{\mathcal{A}} \mathbb{1}_{\mathcal{B}} \cdot f \, d\mu = \sum_{n \in \mathbb{N}} \int_{\mathcal{A}} \mathbb{1}_{\mathcal{B}} \cdot f \, d\mu = \sum_{n \in \mathbb{N}} \mu(B_n).$ Fatous lemma. Let Staf & L'(X, B). Then I liminf for & liminf I for dy. Proof. limint for = lim (inf fi), 10 inf fi for how inf for, 50 by MCT: lim Sintfi du = Slimint for du. Jint fi dp < ftndp for all worng so fint fidp < int f f m dp, here
limint fndp < lim int f m dp = limint f f n dp.

n >> 00

n >>

Example (of strict Ecequality in Faton). For (R, B(IR), N), let for := 1 (n, n+1), so $f_n \rightarrow 0$ but $\int f_n dx = 1$ for all $u \in N$.